
Room-Temperature Si-Compatible Red Light Emission from In2Se3-Decorated Silicon Nanowires
Jinyou Xu, Key Laboratory of Advanced Micro/Nano Functional Materials, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, The People’s Republic of China
Received: Jun. 19, 2017;
Accepted: Jul. 17, 2017;
Published: Aug. 9, 2017
DOI: 10.11648/j.nsnm.20170302.12 View 2407 Downloads 139
Abstract
Next generation of Si-based nano-optoelectronic devices calls for monolithic integration of photonics with silicon. Here we report the synthesis of silicon nanowires with In2Se3 nanoflakes decorated by a one-step chemical vapor deposition under atmospheric pressure. These nanowires show pronounced red emission with wavelength in the range of 620-850 nm at room temperature under illumination of continuous wave laser. The strong emission originates from the photoluminescence of ultra-thin In2Se3 nanoflakes in view of the nanoscale footprint and atomically-thin thicknesses as well as high single-quality of the In2Se3 nanoflakes. This work demonstrated that nanoscale atomically-thin In2Se3 flakes can grow epitaxially on the surface of single-crystalline silicon nanowires and serves as strong red light emission centers for silicon nanowires. Therefore, these nanowires are promising to be used as a Si-compatible red light emission material for Si-based integrated nano-optoelectronic devices.
Keywords
Silicon Nanowires, Optical Materials and Properties, Luminescence, In2Se3
To cite this article
Jinyou Xu,
Room-Temperature Si-Compatible Red Light Emission from In2Se3-Decorated Silicon Nanowires, Nanoscience and Nanometrology.
Vol. 3, No. 2,
2017, pp. 46-50.
doi: 10.11648/j.nsnm.20170302.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Homewood, K. and Lourenco, M; Light from Si via dislocation loops. Mater. Today. 2005, 1, 34-39.
[2]
Rong, H; Liu, A; Jones, R; et al; An all-silicon Raman laser. Nature. 2005, 7023, 292-294.
[3]
Qu, Y. Q; Liao, L; Li, Y. J; et al; Electrically Conductive and Optically Active Porous Silicon Nanowires. Nano Lett. 2009, 12, 4539-4543.
[4]
Lourenço, M. A; Milosavljević, M; Gwilliam, R. M; et al; On the role of dislocation loops in silicon light emitting diodes. Appl. Phys. Lett. 2005, 20, 201105.
[5]
Zhou, W; Pan, A; Li, Y; et al; Controllable Fabrication of High-Quality 6-Fold Symmetry- Branched CdS Nanostructures with ZnS Nanowires as Templates. J. Phys. Chem. C. 2008, 25, 9253-9260.
[6]
Choi, H.-J; Shin, J. H; Suh, K; et al; Self-Organized Growth of Si/Silica/Er2Si2O7 Core−Shell Nanowire Heterostructures and their Luminescence. Nano Lett. 2005, 12, 2432-2437.
[7]
Xu, J; Li, H; Zhuang, X; et al; Synthesis and optical characterizations of chain-like Si@SiSe2 nanowire heterostructures. Nanoscale. 2012, 5, 1481-1485.
[8]
Boyraz, O. and Jalali, B; Demonstration of a silicon Raman laser. Opt. Express. 2004, 21, 5269-5273.
[9]
Espinola, R; Dadap, J; Osgood Jr, R; et al; Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express. 2004, 16, 3713-3718.
[10]
Claps, R; Dimitropoulos, D; Han, Y; et al; Observation of Raman emission in silicon waveguides at 1.54 μm. Opt. Express. 2002, 22, 1305-1313.
[11]
Xu, J; Guo, P; Zou, Z; et al; Eu-doped Si-SiO2 core–shell nanowires for Si-compatible red emission. Nanotechnology. 2016, 39, 395703.
[12]
Kenyon, A; Recent developments in rare-earth doped materials for optoelectronics. Prog. Quant. Electron. 2002, 4-5, 225-284.
[13]
Duan, X; Wang, C; Pan, A; et al; Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 2015.
[14]
Duan, X; Wang, C; Shaw, J. C; et al; Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014.
[15]
Li, H; Duan, X; Wu, X; et al; Growth of Alloy MoS2xSe2(1–x) Nanosheets with Fully Tunable Chemical Compositions and Optical Properties. J. Am. Chem. Soc. 2014, 10, 3756-3759.
[16]
Mak, K. F. and Shan, J; Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon. 2016, 4, 216-226.
[17]
Sun, X. H; Yu, B; Ng, G; et al; III-VI compound semiconductor indium selenide (In2Se3) nanowires: Synthesis and characterization. Appl. Phys. Lett. 2006, 23, 233121.
[18]
Jacobs-Gedrim, R. B; Shanmugam, M; Jain, N; et al; Extraordinary Photoresponse in Two-Dimensional In2Se3 Nanosheets. ACS Nano. 2013, 1, 514-521.
[19]
Zhou, J; Zeng, Q; Lv, D; et al; Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition. Nano Letters. 2015, 10, 6400-6405.
[20]
Lakshmikumar, S. and Rastogi, A; Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source. Sol. Energy Mater. Sol. Cells. 1994, 1, 7-19.
[21]
Julien, C; Hatzikraniotis, E; Chevy, A; et al; Electrical behavior of Lithium intercalated layered In-Se compounds. Mater. Res. Bull. 1985, 3, 287-292.
[22]
Yu, B; Ju, S; Sun, X; et al; Indium selenide nanowire phase-change memory. Appl. Phys. Lett. 2007, 13, 133119-133119-133113.
[23]
Zhai, T. Y; Fang, X. S; Liao, M. Y; et al; Fabrication of High-Quality In2Se3 Nanowire Arrays toward High-Performance Visible-Light Photodetectors. ACS Nano. 2010, 3, 1596-1602.
[24]
Almeida, G; Dogan, S; Bertoni, G; et al; Colloidal Monolayer β-In2Se3 Nanosheets with High Photoresponsivity. J. Amer. Chem. Soc. 2017, 8, 3005-3011.
[25]
Lin, M; Wu, D; Zhou, Y; et al; Controlled Growth of Atomically Thin In2Se3 Flakes by van der Waals Epitaxy. J. Amer. Chem. Soc. 2013, 36, 13274-13277.
[26]
Peng, H. L; Xie, C; Schoen, D. T; et al; Large anisotropy of electrical properties in layer-structured In2Se3 nanowires. Nano Lett. 2008, 5, 1511-1516.
[27]
Ye, J; Soeda, S; Nakamura, Y; et al; Crystal Structures and Phase Transformation in In2Se3 Compound Semiconductor. Jpn. J. Appi. Phys. Vol. 1998, 8 Pt 1, 4264-4271.
[28]
Sánchez-Royo, J. F; Segura, A; Lang, O; et al; Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy. J. Appl. Phys. 2001, 6, 2818-2823.
[29]
Yang, M. D; Hu, C. H; Shen, J. L; et al; Hot Photoluminescence in gamma-In2Se3 Nanorods. Nanoscale Res. Lett. 2008, 11, 427-430.
[30]
Yang, M; Hu, C; Tong, S; et al; Structural and optical characteristics of γ-In2 Se3 Nanorods grown on Si substrates. J. Nanomater. 2011, 7.
[31]
Wagner, R. and Ellis, W; Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett. 1964, 89-90.
[32]
Xu, J; Ma, L; Guo, P; et al; Room-Temperature Dual-Wavelength Lasing from Single-Nanoribbon Lateral Heterostructures. J. Amer. Chem. Soc. 2012, 30, 12394-12397.
[33]
Puthussery, J; Lan, A; Kosel, T. H; et al; Band-filling of solution-synthesized CdS nanowires. ACS Nano. 2008, 2, 357-367.
[34]
Protasenko, V. V; Hull, K. L. and Kuno, M; Disorder‐Induced Optical Heterogeneity in Single CdSe Nanowires. Adv. Mater. 2005, 24, 2942-2949.
[35]
Glennon, J. J; Tang, R; Buhro, W. E; et al; Synchronous photoluminescence intermittency (blinking) along whole semiconductor quantum wires. Nano Lett. 2007, 11, 3290-3295.
[36]
Schumacher, T; Giessen, H. and Lippitz, M; Ultrafast Spectroscopy of Quantum Confined States in a Single CdSe Nanowire. Nano Lett. 2013, 4, 1706-1710.